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Abstract
A consistent continuum model of a soft magnetic elastomer (SME) is presented and developed
for the case of finite strain. The numeric algorithm enabling one to find the field-induced shape
changes of an SME body is described. The reliability of the method is illustrated by several
examples revealing specifics of the magnetostriction effect in SME samples of various
geometries.

1. Introduction

Soft magnetic elastomers (SMEs) are known under many
names: magnetorheological [1] and magnetoactive [2] poly-
mers, elastomagnets [3], magnetoelastics [4, 5], ferrogels [6]
etc; in some works no special name is ascribed [7, 8]. This va-
riety is due on the one hand to numerous interesting properties
of SMEs, and on the other to a plethora of applications they
are considered to be unique for. With regard to their structure,
SMEs are composite magnetically controlled functional mate-
rials based on weakly linked highly elastic matrices filled with
magnetic particles of micron or submicron size. One of the
most remarkable features of these media is a giant magnetic-
strain (striction) effect [4, 6] which appeals for practical use.
Indeed, magnetic strains in SMEs exceed any classical magne-
tostriction by many orders of magnitude and range to tens and
hundreds per cent. This is not a surprise, however, since the
strain-inducing mechanism has nothing in common with crys-
tallophysics. In SMEs, application of a field induces pondero-
motive forces acting on Ampere currents circulating in magne-
tized particles; via the particles, these forces are exerted on the
matrix. The resulting magnetic stress deforms the body along
the direction of the field or stretches it towards the region where
the field is maximal. The equilibrium is reached when this ten-
dency is balanced by the elastic stress striving to preserve the
initial shape of the sample.

For an SME, due to its softness, shape change
(deformation) makes an effective way to reduce the free energy.
Let us estimate the range of elastic moduli within which

the magnetic strain produced by a moderate field becomes
appreciable. We take the field to be about 1 kOe and the
spatial scale of non-uniformity ∼1 cm; these conditions are
achievable in any laboratory. In a uniform field, modeling a
sample with an ellipsoid, we write the magnetic energy gain as
M2�N , where �N is the change in the demagnetizing factor
due to deformation, and M is the SME magnetization. Equally
simple, the increment of the elastic energy is ∼Eε2, where E
is the Young modulus and ε is the strain. Comparison yields
E ∼ M2�N/ε2. For M ∼ 100 G and �N ∼ ε ∼ 0.1,
i.e. a 10% strain, one finds the elastic modulus E ∼ 10 kPa,
that is two to four orders of magnitude lower than in rubbers.
In a non-uniform field the strain is induced by bulk magnetic
forces. Setting their work spent on dragging a material element
by distance 1 cm equal to the elastic energy increment at 100%
strain, one gets for the modulus the same reference value,
E ∼ 10 kPa. Naturally, the deforming action of a non-uniform
field is much higher than that of a uniform one. In general,
these estimates justify the viewpoint of SMEs as a special class
of magnetically sensitive media different from usual magnetic
elastomers (rubbers) [10]. Real SME are made on the base
of weakly linked silicone caoutchoucs [4, 5], polyvinyl alcohol
and polyacrylamide [6] or polystyrene [11] polymeric gels, etc.

To date there has been no exhaustive theory describing
magnetic strain in SMEs, although some serious attempts on
this should be noted [12–14]. In what follows we present
an account of a model that is both the most simple and
the most advanced one. Namely, we consider a continuum
approximation that treats the SME as a homogeneous elastic
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isotropically magnetizable substance. The goal of this short
review is to show that despite its obvious shortcomings the
model is practical and capable of providing reasonable results
in agreement with experiment.

2. Magnetoelasticity equations at finite strains

A study of strain induced by a uniform field is both more
simple and more appropriate for working out an adequate
magnetomechanics of SMEs. Once built up, such a theory
may be easily modified for non-uniform fields. Besides
this, a simplified magnetic part allows us to focus on the
solution algorithm. The point is that the magnetic energy
gain is important only if the shape change of the sample is
considerable. As this gain is determined by internal field H ,
which, in turn, depends on the sample shape, an essentially
coupled magnetoelastic problem arises that is to be solved in a
spatial region of which the boundary is also a sought for issue.

Aiming at the problems with allowance for finite strain,
i.e. large shape changes, it is convenient to introduce
two configurations: initial (non-deformed) and actual
(deformed) [15]. The radius-vector of a point in the initial state
is r, in the actual one it is R = r+u, where u is displacement
vector. Then the basis vectors of the initial state are εi =
∂r/∂qi and those of the actual one ε̂i = ∂R/∂qi , where qi

are reference Lagrange coordinates. Hamilton operators are
defined as ∇ = εi∂/∂qi and ∇̂ = ε̂

i
∂/∂qi , respectively. A

basic kinematic quantity, the deformation gradient, in a system
with metric tensor g is

F = (∇R)T = ε̂iε
i = g + (∇u)T,

F−1 = (∇̂r)T = εi ε̂
i = g − (∇̂u)T,

(1)

where lower/upper indices denote covariant/contravariant
components, respectively.

A complete set of equations for the equilibrium magne-
todeformational effect unites two problems: magnetostatic and
elastic. We start with the magnetic part. In the absence of
electric currents, the magnetic field strength H is presented in
terms of magnetic potential as H = H0−∇̂ψ , where H0 is the
external field. By definition, magnetic induction and magneti-
zation are related to each other by B = H + 4πM . From the
solenoidality condition ∇̂ ·B = 0 follows the Poisson equation

∇̂2ψ = 4π∇̂ · M . (2)

In the general case, the magnetization at a given point
depends on both the local field strength and mechanical strain.
Therefore, we assume the equation of magnetic state in the
form M = M(H,C), where C = FT ·F is the right Cauchy–
Green deformation tensor. Equation (2) is solved with the usual
magnetostatic boundary conditions at the sample surface �:

(
∂ψ(i)/∂N

)
�

− (
∂ψ(e)/∂N

)
�

= 4πM · N |�,
ψ(i)|� = ψ(e)|�,

(3)

where indices (i) and (e) denote the inner and outer spaces and
N is the outer normal.

The force balance equation that determines the equilib-
rium state of the sample is

∇̂ · T + (M · ∇̂)H = 0, (4)

where T is the Cauchy stress tensor. At the surface of the
sample the condition N · T|� = 2πM2

N N |� holds, with
MN = M ·N being the normal component of magnetization.

In general, the elastic potential of an SME that is isotropic
at H0 = 0 is written as [13, 14]

W = W
(
I1(C), I2(C), I3(C),M2

)
, (5)

where I j are principal tensor invariants. As soon as the elastic
potential is defined, one obtains the Cauchy stress tensor in the
form [15]

T = 2J −1F · (∂W/∂C) · FT, (6)

with J = I3(F) being a Jacobian; for an incompressible
medium J = 1.

In the framework of our model the free energy density of
SME is written as

F = −
∫ H

0

◦
M(H ) dH+ ◦

W +α ◦
M 2(H ) [I1(C)− 3], (7)

where
◦

W is the elastic potential at H0 = 0 and
◦

M (H )
the magnetization law at zero strain; α is a parameter that
characterizes the coupling of local magnetization and strain.

For
◦

W , assuming an incompressible SME, we take the
Mooney–Rivlin potential

◦
W= C1[I1(C)− 3] + C2[I2(C)− 3]. (8)

From equations (6)–(8) the stress in terms of the left Cauchy–
Green deformation tensor B = F · FT is written

T = −p g + 2
[
C1(1 + α

◦
M2)+ C2 I1(C)

]
B − 2C2B · B,

I3(B) = 1; (9)

for an incompressible material the net pressure p emerges as
an independent variable.

The magnetic equation of state is given by

M = − ∂F
∂H

=
{ ◦

M − 2α
◦

M
∂

◦
M
∂H

[I1(C)− 3]

}
H

H
. (10)

We concede two variants of the ‘unperturbed’ magnetization
law: a linear one

◦
M = χH and one modeling saturation◦

M = M0 L(γ H )H/H , where χ is the susceptibility, M0 the
saturation magnetization of the SME and γ a parameter of the
Langevin function L.

For an SME sample characterized by energy (7), the force
and field balance relations (2) and (4) with the aid of Maxwell
equations and pertinent boundary conditions may be re-written
in the form of two variational equations:
∫

V (i)
δW dV =

∫

�

[
2πM2

N N + N · S
] · δu dS

−
∫

V (i)

S · ·∇̂δu dV ,

∫

V (i)+V (e)
∇̂ψ · ∇̂δψdV = 4π

∫

V (i)
M · ∇̂δψdV ,

(11)
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where S = (1/4π)(HB− 1
2 gH 2) is the Maxwell stress tensor,

and W the elastic potential with allowance for magnetic terms;
W differs from

◦
W of equation (8) solely by a renormalized first

constant: instead of C1 it contains (C1 + α
◦

M 2).
Equations (7)–(11) make a full set to evaluate the

equilibrium shape of an SME sample and corresponding
distributions of the magnetic field, magnetization and internal
mechanical stress at finite increments of all the latter variables.
By this the main drawback of the former continuum SME
models, the small, i.e. infinitesimal, strain limit, is overcome.
Apparently, for the systems with large shape changes,
the small-strain limit, although convenient for preliminary
analysis, is hardly more than a ‘poor man’s tool’.

3. Algorithm

The problem of field-induced deformation of an SME sample
is nonlinear both physically and geometrically. The fact
that the sample boundary is not fixed but is itself the
subject of evaluation rules out the majority of conventional
numeric tools based on the finite-element method (FEM).
From our experience, an efficient way out, at least for
two-dimensional problems, is provided by the open-code
FreeFEM++ package [16].

In our scheme a nonlinear magnetoelastic problem is
solved as a sequence of linear ones. Its elastic part is given
by a linearized form of the first of integral equations (11):
∫

V (i)

[
T1 · ·δê + I1(ê)δp

]
dV

= −
∫

V (i)

{
(T′ − T′

1) · ·δê + [
I3(F′)− I1(ê′)− 1

]
δp

}
dV

+
∫

�

[
2πM2

N N + N · S
] · δu dS −

∫

V (i)

S · ·∇̂δu dV ,

(12)

where ê = 1
2 (∇̂u + ∇̂uT) and T1 = −p g + 4C1ê is the

part of the stress tensor T that is linear in displacements. In
equation (12) the prime denotes the solutions at the preceding
step.

The linearized magnetostatic problem is written
∫

V (i)

∇̂ψ · δψ dV + 4π
∫

V (i)

χ̃ (H ′)
[
∇̂ψ − H0

]
· ∇̂δψ dV

+
∫

V (e)

∇̂ψ · ∇̂δψ dV = 0, (13)

where χ̃(H ) = M(H )/H ; for linear magnetization χ̃ = χ .
To the boundary conditions (3) imposed at the surface of a
sample, a requirement is added that far from the body the
magnetic potential coincides with that of a magnetic dipole of
the moment μ = ∫

V (i) M dV = ∫
V (i) χ̃ (H ′)H dV .

A self-consistent algorithm that couples the solutions of
the elastic (12) and magnetic (13) problems is organized as
follows. First, a certain initial mesh is generated covering both
the SME sample and a sufficient part of the space around it
so that V (e) � V (i). Then on this mesh the magnetostatic
problem is solved in both inner and outer spaces; i.e., the
instant shape of the body is fixed. As a result, the distributions
of magnetic field and magnetic forces are found. Next, on

Figure 1. Magnetic striction of a cylinder, see the text for
parameters.

the same mesh the elastic problem is solved with the surface
and bulk forces determined from the solution of the magnetic
problem. Thus, the strain distribution is found. Using it, the
mesh is re-built and the process starts anew. The procedure is
stopped when a penalty function that compares displacement
fields at the iteration steps j and j + 1 falls below a given
level.

4. Results and discussion

FreeFEM++ language is well developed only for 2D
problems. With regard to this, we study the cases where an
SME body is axisymmetrical and magnetized along its axis.
Given this, a 3D problem might be solved with a 2D numeric
tool.

4.1. Cylinder and prism

The case is instructive to show the advantages of the finite-
strain approach. The experimental data (Stepanov, see
acknowledgments) were obtained on a prism sample with
dimensions 11 × 4 × 4 mm3 made of an iron carbonyl-based
SME with the effective Young modulus E = 16 kPa (at zero
field). The magnetization curve of the material is quasi-linear
up to 1.5 kOe; the value of M achieved under H0 = 1 kOe is
about 200 G. The measurement results are plotted in figure 1
with filled dots.

Since the present theory could be applied in full only
for axisymmetrical configurations, we replace the prism by
an effective round cylinder whose length and end-wall area
are equal to those of the prism. The external field H0

is uniform and directed along the cylinder axis. We note
that except for an ellipsoid there is no analytical solution of
the magnetostatic problem. So we obtain the net field and
magnetization distributions numerically using FreeFEM++.
Magnetization is assumed to obey a linear magnetic law with
the susceptibility estimated from the measured magnetization
curve. In the small-strain limit a single magnetic calculation is
enough to evaluate the induced forces and the resulting strain
field. To describe the magnetostriction effect, we define the
elongation parameter as ε = [l(H0)− l(0)]/ l(0), where l(H0)

is the cylinder length along the field direction. The small-strain
limit predicts universal scaling ε ∝ H 2

0 /E ; the corresponding
parabola is shown in figure 1 by a solid line. We note that
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Figure 2. Formation of a ‘dome’ at an SME plate with D/h = 10
and χ = 0.2 under the field H = 1 kOe; note the reconfiguration of
the calculation mesh.

it does not contain any adjustable parameters since E and χ
values are taken from independent tests.

As seen, at weak fields the small-strain curve is close
to the measurement while at higher fields it progressively
deviates from this. Remarkably, this deviation is quite large
even in the interval H0 � 1.5 kOe, where, according to the
magnetic measurement, the linear magnetization law holds.
To understand the cause of this divergence, the same problem
is solved in a nonlinear statement by the numerical scheme
described in section 3. Hereby the self-similarity of ε is
no longer valid, and the obtained dependence ε(H0) pertains
to the particular sample under study. Moreover, now the
calculation incorporates an adjustable parameter α introduced
in equation (7). The self-consistent numeric process converges
well; the result of the calculation is plotted in figure 1 by
a dashed line for α = 0.15, which value is found by
fitting. Comparison of the curves and data shows that for
magnetostriction of a cylinder the finite-strain approach is able
to provide good agreement with experiment in a wide range of
fields.

4.2. Thin plate

Another example, being in general also a ‘cylinder’ problem,
demonstrates completely different behavior. Consider a round
thin plate of SME fixed over its rim and subjected to a uniform
magnetic field normal to the plate surface. In the qualitative
aspect, it is clear that for a thin plate to be positioned across
H0 is most unfavorable with respect to the magnetic energy.
To reduce it, the plate will strive to turn its plane along the
field. As the rim is unmovable, this tendency is opposed by
the elastic forces, which are strongest at the periphery of the
plate. Accordingly, the center of the plate is the easiest-to-
move point. Therefore, a possible response of the plate is
to build up a round ‘dome’ where any radial line connecting
the summit with the rim is now tilted to H0 at an angle
smaller than π/2, thus contributing to the negative gain of the
magnetic energy. In the problem studied, all the forces except
for magnetic and elastic ones are neglected. Given this, the
plate deflections in the directions parallel and antiparallel to
H0 (‘positive’ and ‘negative’ domes), being spatially different,
are energetically equivalent. This degeneration entails a
fundamental consequence: with necessity the plane geometry
of the plate may start to deform not earlier than the field
strength H0 reaches some finite (threshold) value. Therefore,
the plate behavior is qualitatively different from the striction
of a prolate cylinder. First, it breaks the inversion symmetry
of the sample (±H0) and, second, it has a finite threshold.
To be precise, we remark that for the plate a plain (zero-
threshold) inversion-symmetrical striction described in the

Figure 3. ‘Dome’ height for a plate with the parameters of figure 2;
measured (points) and calculated (line).

preceding subsection is also present, but is magnitude is
negligible compared to the deflection mode.

The problem admits linear analysis, which for the
threshold field yields

H ∗
0 ∝ √

E (4π + 1/χ) h/R, (14)

where h and R are the plate thickness and radius.
The parametric dependences of the threshold rendered by
equation (14) agree well with those predicted by the finite-
strain calculation. Using the latter at H0 > H ∗

0 , where the
small-strain limit is inapplicable, one obtains the dome shapes
of the SME plate; an example is given in figure 2. Comparison
with experiment proves [17] the reliability of the model; see
figure 3 for illustration.

4.3. Dumb-bell

Consider a dumb-bell consisting of two spheres of radii R
whose centers are connected by a cylindrical rod of length 2h
and radius r . This problem abuts closely on a single-sphere
one. The magnetodeformational effect in isolated SME spheres
and ellipsoids is studied in detail in [9]. These rounded objects
stretch in the direction of the applied uniform field. In a dumb-
bell, however, this tendency is opposed by mutual attraction of
two magnetized bodies whose magnetic moments are parallel
to the main axis. To consider the net elongation of the structure,
two limiting cases could be foreseen with regard to the ratio
r/R. Indeed, a dumb-bell with a thin neck (r 
 R) is mostly
influenced by the sphere attraction. It overcomes the elastic
resistance of the neck, and the net field-induced response is a
contraction of the dumb-bell. In contrast, a dumb-bell with a
neck r � R is close to a prolate ellipsoid and as such elongates
in the direction of H0. Therefore, for a given SME dumb-bell,
just varying the geometry parameters, one can pre-determine
the type of its behavior.

In the framework of the finite-strain algorithm, one is able
to describe the striction of a dumb-bell with an arbitrary set of
geometry and material parameters. In figure 4, as an example,
the overall elongation ε defined similarly to that for a cylinder
is shown as a function of the dumb-bell geometry. As seen,
the qualitative predictions are confirmed in full: under a given
field a dumb-bell could either stretch or contract while at the
‘critical’ value of r/R such a dumb-bell practically does not
change its length.
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Figure 4. Magnetostriction of a dumb-bell with length 2h = 2.6R;
the magnetic susceptibility of the SME is χ = 0.2.

5. Conclusions

A consistent model interpreting an SME as a magnetizable
elastic continuum is presented. The set of equations describing
the equilibrium shape of an SME body under finite deformation
is given. An algorithm that employs the finite-element method
is proposed, and the FreeFEM++ package is shown to be an
appropriate calculation tool.

The approach developed is illustrated with three examples
of SME bodies subjected to a uniform magnetic field. For a
round cylinder the new description turns out to be essential
for bringing together theory and experiment. For a thin plate
a magnetomechanical instability is found and quantified. For
an SME dumb-bell the theory predicts that the field-induced
increment of its overall length is either positive or negative
depending on the relation between the sphere and neck radii.
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